
Int J Theor Phys (2008) 47: 1497–1511
DOI 10.1007/s10773-007-9591-z

Quaternion-Octonion Analyticity for Abelian
and Non-Abelian Gauge Theories of Dyons

P.S. Bisht · O.P.S. Negi

Received: 26 August 2007 / Accepted: 11 October 2007 / Published online: 30 October 2007
© Springer Science+Business Media, LLC 2007

Abstract Einstein-Schrödinger (ES) non-symmetric theory has been extended to accom-
modate the Abelian and non-Abelian gauge theories of dyons in terms of the quaternion-
octonion metric realization. Corresponding covariant derivatives for complex, quaternion
and octonion spaces in internal gauge groups are shown to describe the consistent field
equations and generalized Dirac equation of dyons. It is also shown that quaternion and
octonion representations extend the so-called unified theory of gravitation and electromag-
netism to the Yang-Mill’s fields leading to two SU(2) gauge theories of internal spaces due
to the presence of electric and magnetic charges on dyons.

Keywords Non-symmetric · Quaternion · Octonion · Monopole · Dyons and Gauge
theories

1 Introduction

Einstein-Schrödinger (ES) theory [1–8], a generalization of general relativity, allows a non-
symmetric fundamental tensor and connection. It contains a non-symmetric metric whose
real symmetric part is described as general relativity while imaginary (a skew symmetric)
part was taken by Einstein [1–5] as proportional to the electromagnetic tensor. Research in
this direction ultimately proved fruitless; the desired classical unified field theory was not
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found and the interpretation of the skew symmetric part of the metric, as an electromag-
netic field tensor, has been shown physically incorrect [9–11]. However, Moffat [12–15]
and others [16–19] showed that instead of electromagnetism the anti-symmetric part of the
generalized metric tensor represents a kind of non-symmetric gravitational field which is
free from ghost poles, tachyons and higher-order poles, and there are no problems with
asymptotic boundary conditions. Einstein-Schrödinger (ES) theory has also been modified
and extended [20–23] to include a large cosmological constant (caused by zero-point fluctu-
ations) and sources (spin-0 and spin- 1

2 ). In the weak field approximation where interaction
between fields is not taken into account, the resulting theory is characterized by a symmetric
rank-2 tensor field (gravity), an anti-symmetric tensor field, and a constant characterizing the
mass of the antisymmetric tensor field. The anti-symmetric tensor field is found to satisfy
the equations of a Maxwell-Proca massive anti-symmetric tensor field. Furthermore, the the-
ory permits one or more “running constants”: it allows the mass of the anti-symmetric field,
the coupling constant between the anti-symmetric field and matter, and the gravitational
constant to vary as functions of space and time coordinates. In other words, non-symmetric
gravitation theory (NGT) can be described as a theory that involves a symmetric tensor field
(gravity), an anti-symmetric tensor field, and one or more scalar fields. On the other hand,
Borchsenius [24, 25] developed a principle of correspondence and constructed an unified
non-symmetric theory which includes gravity, electromagnetism and Yang-Mills field the-
ory. Unfortunately, none of the non-symmetric unified models survived as a plausible theory.
Besides the problem of spin-0 and not the spin-1 content of the antisymmetric part of the
metric, it was shown by Damour et al. [26, 27] that the Einstein theory and those which
are based on the Einstein Lagrangian, exhibit negative-energy (ghosts) radiative modes and
accordingly the Borchsenius [24, 25] theory, which includes the Yang-Mills field in Bonnor-
Moffat-Boal (BMB) [16–19] theory, has the same problems. However, the inconsistencies
and cure as well as problems and hopes have always been challenging issues [26–29] in
non-symmetric gravity theories and still the status of ES or NGT is not clear. Moreover,
Morques and Oliveira [30, 31] has developed the quaternion-octonion geometrical exten-
sion and interpretation of Einstein-Schrödinger (ES) non-symmetric theory which includes
consistently [32] the Bonnor-Moffat-Boal (BMB) [16–19] and Borchsenius [24, 25] the-
ories. It is shown [30–34] that the real algebra describes general theory of relativity, the
complex algebra gives the interpretation of Einstein-Schrödinger (ES) non-symmetric the-
ory and Borchsenius theory [24, 25] is interpreted in terms of quaternions isomorphic to
SU(2) group. Similar work has been done by Ragusa [35–39] by enlarging NGT to include
the Yang-Mills field theory and it is shown that the anti-symmetric part of the metric tensor
(2 × 2 matrix), describes both types of field equations namely the electromagnetism and
Yang-Mills field in the flat space linear approximation. Yet, the inconsistencies and cure as
well as problems and hopes have always been challenging issues [35–39] in non-symmetric
gravity theories. On the other hand, despite of the potential importance of monopoles
[40–44] and dyons [45–52] the formalism necessary to describe them has been clumsy
and not manifestly covariant [53–59]. So, a self consistent and manifestly covariant the-
ory of generalized electromagnetic fields of dyons (particle carrying electric and magnetic
charges) has been constructed [60–73] in terms of two four-potentials [74, 75] to avoid
the use of controversial string variables. The generalized charge, generalized four-potential,
generalized field tensor, generalized field vector and generalized four-current density asso-
ciated with dyons have been described as complex quantities with their real and imaginary
parts as electric and magnetic constituents.

So, without going in to the controversies of ES or NGT theories, and keeping in mind the
potential importance of monopoles (or dyons), in the present paper, we have extended the
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quaternion-octonion generalization of non-symmetric metric theory developed by Morques
et al. [30–34] to accommodate the Abelian and non-Abelian gauge theories of the gener-
alized fields of dyons (particles carrying simultaneous electric and magnetic charges). We
have applied here the non-symmetric metric theory and the corresponding affine geometry
for three different spaces over the field of complex, quaternion and octonion hyper complex
number systems. It has also been shown that the symmetric part of the unified metric theory
is associated with gravity while anti-symmetric part is described as the generalized electro-
magnetic field tensor of dyons. Extension of the metric by quaternionic tangent space has
been shown to describe the total curvature in terms of gravitation and electromagnetism,
along with the non-Abelian Yang-Mill’s field (internal quaternion curvature) while the fur-
ther extension of the metric theory to the case of octonions leads the internal octonionic
curvature which gives rise to two different Yang-Mill’s gauge fields. So, the present theory
describes the combined gauge structures GL(R)⊗U(1)e ⊗U(1)m ⊗SU(2)e ⊗SU(2)m where
GL(R) describes Gravity, U(1)e demonstrates the electromagnetism due to the presence
of electric charge, U(1)m is responsible for the electromagnetism due to magnetic mono-
pole, SU(2)e demonstrates the Yang-Mill’s field due to the presence of electric charge while
SU(2)m gives rise the another Yang-Mills field due to the presence of magnetic monopole.
It has also been shown that this unified picture reproduces the Gravity, electromagnetism
and theory of Yang-Mill’s field in the absence of magnetic monopole. Accordingly we have
obtained the generalized Dirac equation for dyons from the covariant derivatives in terms of
complex, quaternionic and octonionic tangent spaces.

2 Quaternion-Octonion Generalization of Non-Symmetric Metric

The real formulation of non-symmetric theory is expressed [30, 32] in terms of the real
tensor gμν as,

gμν = hμν + kμν (1)

and its conjugate is accordingly given by

gμν = hμν − kμν = hμν + kμν = gνμ. (2)

So, in Non-Riemannian space-time, ES non-symmetric theory is described in terms of an
n-dimensional internal space and thus the line element on the curved space-time is written
[30–34] as

ds2 = 1

n
Tr(Gμνdxμdxν) (3)

where

Gμν = (Ga
μνb(x)), ∀a, b = 1,2, . . . , n. (4)

is a matrix of internal space such that
(

1

n

)
TrGμν = gμν. (5)

Here gμν is the metric of the ES asymmetric theory and Tr is acting on internal matrices. We
have

G†
μν = Gνμ (6)
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where the (†) operation is used for the Hermitian conjugate. Here Gμν is an object with
two matrix indexes a and b in internal space supposedly restricted to the internal space of
2 × 2 unitary matrices of SU(2) symmetry group. So, each object in this space may then
be written as a linear combination of four linearly independent matrices τμ (μ = 0,1,2,3),
where τ0 = 0 and τ

†
j = τj (j = 1,2,3). Hence the metric (4) may now be written as

Gμν = gμντ0 + fμνiτi (7)

with

gμν = gμν + iFμν, (8)

where Fμν is the Maxwell’s tensor, fμνi represents the Yang-Mills field strength and for
brevity, we have set all the coefficients (or constants) as unity. The internal covariant deriv-
ative of a vector (or a spinor in spin space) ψa = ψa(x), ∀a = 1,2, is defined as

ψa
||μ = ψa

,μ + �a
μbψ

b. (9)

Here the affinity �μ = (�a
μb(x)) is the object which makes ψa

,μ to transform like a vector
under transformations in the internal space. �μ can be related with the gauge potential as

�μ = iCμ.τ (10)

and obeys the following internal transformations law as

�
′
μ = U(x)�μU−1(x) − ∂U(x)

∂xμ
U−1(x), (11)

where U(x) is defined in terms of the internal transformation matrices of local SU(2) gauge
group. In the curved space-time �μ, transforms like a vector. Thus the internal curvature is
defined as

ψa
||μν − ψa

||νμ = P a
μνbψ

b. (12)

Here P a
μνb is the curvature in the internal space, i.e.

Pμν = �μ,ν − �ν,μ − [�μ,�ν], (13)

Pμν = −Pνμ. (14)

In case of complex tangent space, the U(x) “internal transformation matrix” is described by
the matrices of the internal gauge group U(1). Hence the transformation laws of an object
in the complex C-space, K may be written as,

K ′ = U(1)K (15)

where U(1) stands for a unitary 1 × 1 (local) transformation matrix, U(1) = eiφ(x), and

K
′ = U(1)K (16)

where U(1) = U−1(1) = e−iφ(x). Accordingly, the “internal connection” Cν is transformed
as

C ′
ν = U(1)CνU

−1(1) − Unu(1)U−1(1). (17)
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It should be noted that the connection Cν transforms as a vector under space-time trans-
formations. In a particular case where the internal transformations are represented by the
matrices U(1) = 1 + iφ, the connection Cν transforms in first order as,

C ′
ν = Cν + iφ,ν (18)

which follows the gauge transformation law for an electromagnetic potential.
In the Borchsenius theory [24, 25], the vector space is described in terms of Pauli matrices

which can be reinterpreted as quaternions [30–34] to describe quaternion tangent space. In
this case, we take ej = i−1σj , ∀j = 1,2,3; i = √−1; σi are Pauli matrices and ej are
quaternion basis elements satisfying the following multiplication relation

ej ek = −δjke0 + εjklek (19)

where e0 is the unit element of the quaternion algebra i.e. e0 = σ0 and δjk is the Kronecker
delta symbol. So, the metric in quaternionic space-time undergoes with the symmetry prop-
erty given by (6) where the Hermitian conjugation operation is carried out in terms of the
quaternionic internal space or Q-space and �ν = −Ca

ν ea is the affinity in the quaternionic
internal space and transforms under the transformation laws given by (11). Since, quater-
nion basis elements are isomorphic to the algebra of Pauli spin matrices, we may obtain
other results given by (12, 13) and (14) in quaternion tangent space.

For octonion tangent space, we use the split octonion O algebras where an octonion P is
written [76–91] in the split O algebra as,

P = au�
0 + bu0 − nku

�
k + mkuk, ∀k = 1,2,3 (20)

where u�
0, u0, uk, u

�
k (∀k = 1,2,3) are the split O basis elements [30–34, 76–91] defined as

u0 = 1

2
(e0 + ie7), u�

0 = 1

2
(e0 − ie7),

uk = 1

2
(ek + iek+3), u�

k = 1

2
(ek − iek+3).

(21)

Here the set of octets e0,e1, e2, e3, e4, e5, e6, e7 are known as the octonion units satisfying
the following multiplication rule

e2
0 = e0 = 1, e0eA = eAe0 = eA,

eAeB = −δABe0 + fABCeC (∀A,B,C = 1,2, . . . ,6,7)
(22)

where the structure constants fABC is completely antisymmetric and takes the value 1 for
following combinations

fABC = 1 ∀(ABC) = (123); (471); (257); (165); (624); (543); (736). (23)

So, a split octonion P given by (20) is now be written [30–34, 76–91], in terms of 2 × 2
Zorn’s vector matrix realizations as

P ∼= Z(P ) =
(

a −−→n−→m b

)
. (24)
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We may also express split octonion algebra in terms of Pauli matrices which are related with
the quaternion basis elements given by (19). So, we define the following 2 × 2 Zorn’s vector
matrix realizations of split octonion basis elements u�

0, u0, uk, u
�
k (∀k = 1,2,3) i.e.

Z(u�
0) =

(
1.e0 02

02 02

)
, Z(u0) =

(
02 02

02 1.e0

)
,

Z(u�
k) =

(
02 −1.ek

02 02

)
, Z(uk) =

(
02 02

1.ek 02

)
.

(25)

The octonion conjugation of P is now defined as

P = bu�
0 + au0 + nku

�
k − mku

�
k (∀k = 1,2,3) (26)

and a Hermitian conjugate of P is expressed as

P † = (P )� = b�u�
0 + a�u0 + n�

ku
�
k − m�

kuk (∀k = 1,2,3). (27)

As such, we may reformulate (4) as the O “metric” with its split form [30, 32] as

Gμν(x) =
(

s0
μνe0 −sk

μνeκ

rk
μνeκ r0

μνe0

)
= Gμν(s, r). (28)

Here r0
μν = s0

μν = g(μν) + iF[μν]; g(μν) is identified as the symmetric metric (gravity-
expressed in terms of algebra of real numbers GL(R)) and F[μν] is the Maxwell U(1) valued
electromagnetic field strength, while rk

μνand sk
μν are SU(2) valued field strengths of two

Yang-Mills (non-Abelian gauge) fields. So, we get the following symmetry property

G†
μν(s, r) = Gνμ(s, r) (29)

and

Gμα(s, r)G
μν(s, r) = Gνμ(s, r)Gαμ(s, r) = δν

α(u0 + u∗
0). (30)

Here we agree with the statement of Castro [87] that the most salient feature of the split
octonion metric Gμν given by (28) is that it includes the ordinary space time metric gμν ,
in addition to electromagnetism and Yang-Mills fields. Hence it automatically justifies the
Kaluza-Klein theory without introducing extra space-time dimensions. The line element in
the O space-time is thus defined by

ds2 = 1

4
Tr(dxμdxνGμν) (31)

while the affinity �ν given by (9) is expressed in the internal octonionic space as

�ν =
(

02 −Lν.e

Kν.e 02

)
(32)

where {Lν} and {Kν} are two real four-potentials (gauge connections) analogous to {Cμ}
given by (10) and discussed above for the quaternionic case. Like (13), the octonion curva-
ture Sνγ may then be written as

Sa
νγ c = Sa

νγ c(u0 + u∗
0) + δa

c Pνγ . (33)
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3 Non-Symmetric Metric and Dyonic Fields

Let us extend the Einstein-Schrödinger non-symmetrical metric in terms of three different
tangent spaces namely complex, quaternionic and octonionic cases associated with the gen-
eralized fields of dyons.

3.1 Complex Case

In the complex tangent space case, the non-symmetric metric gμν given by (1) is rewritten
as

gμν = gμν + ikμν, (34)

where we represent F[μν] = kμν as the anti-symmetric tensor comprising electromagnetic
field associated with dyons in the following manner

kμν → (Fμν + iF d
μν), (35)

where {Fμν} and {Fd
μν} are described as generalized electromagnetic and dual electromag-

netic fields of dyons [60–65, 76–78]. So this extension accommodates both types of non-
symmetric metrics real as well as complex where one of the Maxwell field is always real.
Thus for the dyonic case, we may identify the internal connection (i.e. Cν ) as the generalized
electromagnetic potential {Vμ} of dyons [60–65, 76–78] described as

{Vμ} = {Aμ} − i{Bμ}. (36)

Hence, in complex case, non-symmetric metric (35) is associated with our generalized elec-
tromagnetic field tensor of dyons [60–65, 76–78] (i.e. the matrix of the internal space for
dyonic fields) as

Gμν = Fμν − iF d
μν, G�

μν = Fμν + iF d
μν, (37)

where (�) denotes the complex conjugation. Hence, replacing the gauge connection {Cv} by
our generalized four potential {Vν}, we get,

Gμν = Vμ,ν − Vν,μ, G�
μν = V �

μ,ν − V �
ν,μ. (38)

As such, correspondingly, we have the following field equations,

Gμν,ν = Jμ, G�
μν,ν = J �

μ, (39)

where {Jμ} represents the generalized current for the dyonic fields given by {Jμ} =
{je

μ} − i{jm
μ } with {je

μ} and {jm
μ } are described as the four currents respectively associated

with electric and magnetic charges. Equation (37) gives the following decompositions of
electric and magnetic field strengths of dyons i.e.

Fμν = 1

2
(Gμν + G�

μν), F d
μν = − 1

2i
(Gμν − G�

μν). (40)

Thus we obtain the following decoupled Generalized Dirac-Maxwell’s (GDM) equations of
dyons in terms of electric and magnetic four currents as

Fμν,ν = 1

2
(Gμν,ν + G�

μν,ν) = 1

2
(Jμ + J �

μ) = je
μ,

F d
μν,ν = − 1

2i
(Gμν,ν − G�

μν,ν) = 1

2
(Jμ − J �

μ) = jm
μ .

(41)
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Here dyons are considered as the point particle carrying simultaneous existence of electric
and magnetic charges in terms of two Abelian U(1) gauge structures. Now replacing in-
ternal connection {Cμ} by generalized potential {Vμ}, we may apply the following internal
transformation law (22, 23) as

Vμ → �V �
μ�−1 − (∂μ�)�−1 (42)

and the corresponding equation (18) for the dyonic field is then expressed as

Vμ → Vμ + iφ,μ (43)

which is the gauge transformation for the generalized electromagnetic potential of dyons.
Similarly we may write

V �
μ → �V �

μ�−1 − (∂μ�)�−1 → V �
μ + iφ�

,μ (44)

and consequently we get the following decoupled electric and magnetic U(1) gauge con-
nections

Aμ = 1

2
(Vμ + V �

μ), Bμ = i

2
(Vμ − V �

μ). (45)

Here Aμ and Bμ represent the electric and magnetic four-potential of dyonic fields and are
the out comes of the non-symmetric metric in the complex tangent space. As such we may
write the covariant derivative Dμ as

Dμ → ∂μ + iVμ, Dν → ∂ν + iVν (46)

and therefore

[Dμ,Dν] = DμDν − DνDμ = Gμν (47)

which satisfies the generalized Maxwell’s-Dirac equation for dyonic fields given (39). As
such, without disturbing the real part of the non-symmetric ES metric (taking it as gravity)
we have successfully extended its imaginary part corresponding to the generalized fields of
dyons in order to reformulate the self-consistent and manifestly covariant theory of dyons.

3.2 Quaternion Case

In order to develop unified quaternionic non-symmetric metric theory, we use the bi-
quaternionic formulation of dyons described earlier (Shalini Bisht et al. [71]) instead of
using the metric of the real quaternionic tangent space since bi-quaternions work over the
filed of complex numbers like ordinary quaternions do with real numbers. So, the metric
given (7, 8) is now written as

Gμν = G0
μνe0 + Gj

μνej (48)

and

G0
μν = gμν ⇒ gμν + ikμν ⇒ gμν + i(Fμν − iF d

μν),

Gj
μν ⇒ fμνj = f e

μνj − if m
μνj ,

(49)

where superscript (e) and (m) are used for electric and magnetic counter parts of dyons.
Accordingly, we may use the properties of quaternion metric, internal covariant derivative,
the transformation law, curvature etc. for the quaternionic space-time given by (9) to (14).
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Let us now define the covariant derivative [63] in quaternionic non-symmetric metric
theory of dyonic fields as

Dμ → ∂μ + Vμe0 + V a
μea,

Dν → ∂ν + Vνe0 + V a
ν ea (a = 1,2,3)

(50)

which gives the complex Abelian and non-Abelian U(1) × SU(2) gauge structure. The sec-
ond term in the right hand side of (50) represents the electromagnetic U(1) part while the
third term represents the non-Abelian SU(2) part of Yang-Mill’s field spanned in the term
of quaternion basis elements. Then we get

[Dμ,Dν]ψ = (DμDν − DνDμ)ψ = (Gμνe0 + Ga
μνea)ψ (51)

which describes U(1) × SU(2) gauge field strengths for generalized fields of dyons. In
equation (51) we have

Gμν = ∂μVν − ∂νVμ, Ga
μν = ∂μV a

ν − ∂νV
a
μ (52)

and subsequently we get the following field equations

Gμν,ν = DνGμν = jμ, Ga
μν,ν = DνG

a
μν = ja

μ, (53)

where jμ and ja
μ are the generalized current corresponding to the electromagnetic part U(1)

and non-Abelian part SU(2) respectively for the dyonic fields. So, we get the following
continuity equation for generalized fields of dyons as

∂μJμ = 0, (54)

but for non-Abelian gauge fields, we get

∂μJ a
μ 
= 0, DμJμ = 0, (55)

where

Jμ = Jμe0 + J a
μea (56)

which is the U(1) × SU(2) gauge structure of the generalized current associated with dyons
consisting point like U(1) gauge structure of Abelian four current {Jμ} followed by SU(2)

like extended Yang-Mill’s gauge structure {J a
μ} as the non-Abelian gauge current.

3.3 Octonion Case

Octonionic tangent space has been defined in terms of its split basis. Its metric is also defined
in split form by equations (28, 29) while line element in the O space-time is expressed by
(31) and other properties are given by (32–33). Octonionic gauge formulation of dyonic
fields has also been discussed by us (Shalini Dangwal et al. [76]). As such, we may straight
forwardly write the covariant derivative for the dyonic fields in split octonion form as,

Dμ →
(

∂μ + Vμ −V a
μea

V a∗
μ ea ∂μ + V a

μ

)
, Dν →

(
∂ν + Vν −V a

ν ea

V a∗
ν ea ∂ν + V a

ν

)
. (57)
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Then we get

[Dμ,Dν] =
(

Fμν −−→
Fa

μν.
−→ea−→

f a
μν.

−→ea fμν

)
= Gμν, (58)

where

Fμν = ∂μVν − ∂νVμ, F a
μν = ∂μV a

ν − ∂νV
a
μ + iεabcV

b
μV c

ν ,

fμν = ∂μV �
ν − ∂νV

�
μ, f a

μν = ∂μV a�
ν − ∂νV

a�
μ + iεabcV

b�
μ V c�

ν .
(59)

Therefore we may obtain the following split form of field equation as

DμGμν =
(

jν −ja
ν ea

ka
ν ea kν

)
= Jν (60)

and the U(1) × SU(2) form of generalized continuity equation as

DνJν = 0. (61)

As such, the octonion extension of unified non-symmetric metric for the case of dyons is
described in terms two U(1) Abelian (electromagnetic) and two SU(2) non Abelian (Yang-
Mills field). Thus for the case of quaternions and octonions we need not to define the Yang-
Mills field by hand. The difference between bi-quaternion and octonion formulations is that
bi-quaternions are non-commutative but associative while the octonions are neither commu-
tative nor associative and in split basis the role of associativity is played by the alternativity.
Octonion has the advantage to work in higher dimensional space time. We may now discuss
the decomposition of theories in terms of electric and magnetic charges in the following
manner.

3.3.1 (Electric Case)

In this particular case (electric case) if we put that Vμ = V �
μ i.e. Aμ − iBμ = Aμ + iBμ ⇒

Bμ = 0 or giving rise to Vμ = Aμ. Hence we get the following split octonion representation
of covariant derivative in the absence of magnetic monopole i.e.

Dμ →
(

∂μ + Aμ −Aa
μea

Aa
μea ∂μ + Aμ

)
, Dν →

(
∂ν + Aν −Aa

νea

Aa
νea ∂ν + Aν

)
(62)

and then we get

[Dμ,Dν] =
(

Fμν −−→
Fa

μν.
−→ea−→

f a
μν.

−→ea fμν

)
= Eμν. (63)

Consequently

DμEμν =
(

jν −ja
ν ea

ja
ν ea jν

)
= Jν (64)

which is the split octonion form of generalized U(1) × SU(2) field equation where the di-
agonal elements represent the Maxwell’s equation while the off diagonal elements describe
the Yang-Mills gauge fields in absence of magnetic monopole.
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3.3.2 (Magnetic Case)

In this particular case (electric case) if we put that Vμ = −V ∗
μ i.e. Aμ − iBμ = −Aμ − iBμ ⇒

Aμ = 0 ⇒ Vμ = −iBμ and hence V �
μ = iBμ. Therefore, have

Dμ →
(

∂μ − iBμ iBa
μea

iBa
μea ∂μ + iBμ

)
, Dν →

(
∂ν − iBν iBa

ν ea

iBa
ν ea ∂ν + iBν

)
(65)

and

[Dμ,Dν] =
(

Fμν −−→
Fa

μν.
−→ea−→

f a
μν.

−→ea fμν

)
= Hμν (66)

and

DμHμν =
(

kν −ka
ν ea

ka
ν ea kν

)
= Kν (67)

which is the split octonionic form of generalized U(1) × SU(2) field equations where the
diagonal elements represent the dual Maxwell equation i.e for pure magnetic monopole and
off diagonal elements describe the Yang-Mills gauge fields in the absence of electric charge.

4 Generalized Dirac Equations for Dyons

We may now adopt the fore going analysis to obtain the Dirac equation for dyons on using
the ES non-symmetric theory. The simplest free particle Dirac equation is given by

(γ μ∂μ + κ)ψ = 0 (68)

and to write the interacting form of Dirac equation one has to replace the partial derivative ∂μ

by covariant derivative Dμ. So, we follow the same process and write the generalized Dirac
equation for particles carrying electric and magnetic charges (i.e. dyons). Replacing the
partial derivative ∂μ by covariant derivative Dμ, we may write following form of equation
of a Dirac particle in generalized electromagnetic fields of dyons as

(γ μDμ + κ)ψ = 0, (69)

where we have used the natural units of c = � = 1 and Dμ is covariant derivative in complex,
quaternion and octonion tangent spaces of Einstein-Schrödinger non-symmetric theory. For
complex case the covariant derivative is illustrated as

Dμ → ∂μ + iq�Vμ, (70)

where

q�Vμ → eAμ + gBμ. (71)

Thus the Dirac equation is

{γμ(∂μ − ieAμ − igBμ) + κ}ψ = 0

or

{γμDμ + κ}ψ = 0 (72)
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which is invariant under gauge transformation as well. For quaternion case, we may write
the covariant derivative as

Dμ → ∂μ − i(q�Vμ)e0 − (q�aV a
μ )ea, (73)

where

q�Vμ → eAμ + gBμ, q�aV a
μ → εAa

μ + ε′Ba
μ, (74)

where ε and ε′ are the Yang-Mill’s coupling constants associated with the isotropic cou-
pling parameters of electric and magnetic charges respectively. Similarly the Dirac equation
for generalized fields of dyons in octonionic tangent space is described by (69) where the
covariant derivative is given in the split octonion form as

Dμ →
(

∂μ + q∗Vμ −qV a
μea

qV ∗a
μ ea ∂μ + qV ∗

μ

)
(75)

which is double fold structure of quaternionic tangent space and is described in terms of
Zorn’s vector matrix realization of split octonion basis elements.

5 Discussion and Conclusion

It is note worthy to include here, a motivation for the use of split octonion algebra instead
of real octonion because the split octonion have the advantages to work in terms of matrix
realizations while due to non associativity of real octonions, it is impossible to write their
correspondence with the matrix realizations. Secondly, the real octonion forms a metric in
eight dimensional structure while the split octonion has the two (4,4) (four fold) degeneracy
in complex space time and has the direct correspondence with the bi-quaternions. We may
also develop a similar theory using the real octonion but in that case it will hard to give the
four dimensional correspondence. So, this is why the quaternion-octonions play an impor-
tant role in order to understand the physical theories of higher dimensional supersymmetry
and super gravity etc. As we have mentioned that the octonions consist seven imaginary units
resulting to seven permutations of SU(2) Yang-Mill’s fields. So we have the scope to enlarge
the metric without putting the additional structure of space-time by hand and accordingly
there is a possibility to define covariant derivative of a vector obtained in terms of octonionic
vector potential and the octonion curvature. The automorphism group of octonion algebra
is the 14-dimensional G2 group [79–91] which admits a SU(3) sub-group and leaves the
idempotent u0 and u�

0 of split octonion algebra as invariant. We have established the con-
nection between real and split basis of octonions and accordingly developed our present
formulation. Due to the lack of associativity in octonion representation we have described
octonion basis elements in terms of Zorn’s vector matrix realizations where octonions are
represented as the double fold degeneracy in terms of quaternion variables to maintain the
consistency in our theory of dyonic fields. Equation (34) represents the non-symmetric met-
ric in the complex tangent space for dyonic fields, where kμν is the anti-symmetric tensor
associated with the generalized fields of dyons. Because the antisymmetric part has been
described as further complex quantity, our theory removes the conflicts that Maxwell tensor
is real or imaginary and leaves all other good points of ES or NGT metric untouched. The
Dyon field tensor is expressed by (35) and (36) in terms of electromagnetic field strengths
associated with electric and magnetic sources. In this theory we have replaced the internal
transformation Cν by generalized gauge potential Vν of dyons. It has been shown that the
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anti-symmetric part of the metric leads to generalized field equations of dyons discussed
by (39). Accordingly, we have obtained the electric and magnetic field tensors from the
generalized one for dyons as discussed by (40). Consequently, (41) describes the electric
and magnetic four-currents obtained from the corresponding field tensors of dyons which
are considered as the particles carrying simultaneous existence of electric and magnetic
charges. Equations (42) to (44) are the unitary internal transformations for the dyonic gauge
potential. Equation (46) represents the covariant derivative in the complex tangent space
for dyonic fields, with the help of which we have obtained (47) and (48), which in fact
represent the differential forms of generalized Maxwell’s-Dirac equation for dyonic fields.
Equation (49) expresses the covariant derivative for dyonic fields in the quaternionic tangent
space of the non-symmetric theory in which the second term represents the electromagnetic
part while the third term represents the non-Abelian part of Yang-Mill’s field in terms of
quaternion basis vectors. Also with the help of (49) we have obtained (50), which describes
U(1)×SU(2) gauge structure of generalized quaternion tangent space. In (50) Gμν and Ga

μν

are the gauge field strengths of Abelian and non-Abelian fields of dyons. In (52) Jμ and J a
μ

are generalized currents corresponding to the electromagnetic U(1) part and non-Abelian
SU(2) part respectively for dyonic fields. Equations (53) and (54) represent the continuity
equation where Jμ is expressed by (55) which in fact is the U(1)×SU(2) gauge structure of
generalized current associated with dyons consisting point like electromagnetic U(1) gauge
structure having the four current Jμ followed by SU(2) like extended Yang-Mill’s gauge
structure with non Abelian nature four current J a

μ . Equation (56) represents the split octo-
nion derivative for dyonic fields in non-symmetric theory, which in fact is the double fold
realization of quaternion derivative. With the help of (56) we have obtained (57, 58) and
(59), respectively defines the double fold U(1) × SU(2) gauge structures of quaternion tan-
gent space and generalized Dirac-Maxwell’s equation for dyonic fields. Also (60) represents
the continuity equation for dyonic fields in octonionic tangent space. It has been shown that
the theory of dynamics of electric and magnetic charges is reproduced from the generalized
theory of dyons using complex, quaternion and octonion tangent spaces. Equation (68) illus-
trates the covariant derivative for generalized fields of dyons in the complex tangent space
of Einstein-Schrödinger non-symmetric theory, where q�Vμ is represented by (69). Conse-
quently (70) is the Dirac equation for generalized fields of dyons in complex tangent space,
which is invariant under gauge transformation and Lorentz transformation as well. Equa-
tion (71) represents the covariant derivative in quaternionic tangent space. In (72) e and g

are electric and magnetic charges of dyons and ε and ε′ are Yang-Mill’s coupling constants
associated with the isotopic spin coupling parameters due to the presence of electric and
magnetic charges respectively. Thus (73) represents the Dirac equation for generalized fields
of dyons in quaternionic space of ES non-symmetric theory. Similarly (69) represents the
Dirac equation for generalized fields of dyons in octonion tangent space if Dμ is described
in its split octonion form given by (74). Here we see that the Dirac equation in the octonion
tangent space is the doubly fold structure of quaternionic tangent space and is described in
terms of Zorn’s vector matrix realization of split octonion basis elements. As such, the fore
going analysis describe the further extension of ES non-symmetric metrics successfully and
consistently in terms of three hyper complex number system namely complex, quaternion
and octonion without imposing extra constrains. So, in nutshell, the present theory describes
the combined gauge structures GL(R) ⊗ U(1)e ⊗ U(1)m ⊗ SU(2)e ⊗ SU(2)m where GL(R)

describes Gravity, U(1)e demonstrates the electromagnetism due to the presence of electric
charge, U(1)m is responsible for the electromagnetism due to magnetic monopole, SU(2)e

demonstrates the Yang-Mill’s field due to the presence of electric charge while SU(2)m gives
rise the another Yang-Mills field due to the presence of magnetic monopole. It has also
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been shown that this unified picture reproduces the Gravity, electromagnetism and theory of
Yang-Mill’s field in the absence of magnetic monopole. Accordingly we have obtained the
generalized Dirac equation for dyons from the covariant derivatives in terms of complex,
quaternionic and octonionic tangent spaces.
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